Stable Reductive Varieties I: Affine Varieties
نویسنده
چکیده
0. Introduction 1 1. Main definitions and results 3 2. General criteria 6 2.1. Seminormality and connectedness of isotropy groups 6 2.2. Finiteness of number of orbits and group–like condition 9 3. Orbits in stable reductive varieties 11 3.1. Isotropy groups 11 3.2. Algebras of regular functions 14 4. Reductive varieties 18 4.1. Classification 18 4.2. Associated stable toric varieties 20 5. Stable reductive varieties 24 6. Self–adjoint stable reductive semigroups 26 7. Families 32 7.1. General remarks 32 7.2. Moduli of embedded stable reductive varieties 35 7.3. Local isotriviality 38 7.4. One–parameter degenerations 39 7.5. The Vinberg family 42 7.6. Local structure of families of reductive varieties 45 References 45
منابع مشابه
Stable Reductive Varieties Ii: Projective Case
0. Introduction 1 1. Main definitions 3 2. Polarized stable reductive varieties 4 2.1. Classification 4 2.2. Cohomology groups 8 3. Pairs 9 4. Moduli of stable reductive pairs 10 4.1. General remarks on families 10 4.2. One-parameter degenerations 11 4.3. Construction of the moduli space of pairs 13 4.4. Projectivity of the moduli space 17 4.5. Structure of the moduli space 18 5. Connection wit...
متن کاملFormulas for the dimensions of some affine Deligne-Lusztig Varieties
Rapoport and Kottwitz defined the affine Deligne-Lusztig varieties X w̃ (bσ) of a quasisplit connected reductive group G over F = Fq((t)) for a parahoric subgroup P . They asked which pairs (b, w̃) give non-empty varieties, and in these cases what dimensions do these varieties have. This paper answers these questions for P = I an Iwahori subgroup, in the cases b = 1, G = SL2, SL3, Sp4. This infor...
متن کاملEquivariant Vector Bundles on Certain Affine G-Varieties
We give a concrete description of the category of G-equivariant vector bundles on certain affine G-varieties (where G is a reductive linear algebraic group) in terms of linear algebra data.
متن کاملConnected Components of Affine Deligne-lusztig Varieties in Mixed Characteristic
We determine the set of connected components of minuscule affine Deligne-Lusztig varieties for special maximal compact subgroups of unramified connected reductive groups. Partial results are also obtained for non-minuscule closed affine Deligne-Lusztig varieties. We consider both the function field case and its analog in mixed characteristic. In particular, we determine the set of connected com...
متن کاملClassification of Smooth Affine Spherical Varieties
Let G be a complex reductive group. A normal G-variety X is called spherical if a Borel subgroup of G has a dense orbit in X. Of particular interest are spherical varieties which are smooth and affine since they form local models for multiplicity free Hamiltonian Kmanifolds, K a maximal compact subgroup of G. In this paper, we classify all smooth affine spherical varieties up to coverings, cent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004